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Abstract: Gravel distribution by inland waterway transport is characterized with very intensive material 
flows and very low profit margins. Therefore, gravel distribution companies are in constant efforts on 
improving system efficiency by increasing productivity of existing facilities. Barges’ unloading activity is 
executed at the end of inland waterway transport process and has a large influence on productivity of 
whole system, since minimization of time that barges spend waiting for services maximize time they 
transport gravel, i.e. their productive time. In this paper, we transfer this optimization problem in a well 
known class of multiple traveling repairman problem with time windows. Due to time consuming 
solution process in case of real size problem instances, beside optimal mathematical formulation of 
the problem we present solution approach based on Variable Neighborhood Search metaheuristic 
algorithm. 

1 INTRODUCTION 
Gravel distribution by inland waterway transportation includes three main phases: loading of 

gravel by a suction dredger into barges, transport of gravel to the ports or unloading locations, and 
unloading of gravel by a handling facility that usually consists of pontoon mounted crane and belt 
conveyor. Because of high costs, a number of handling facilities is usually relatively small, and 
requires successive relocation of handling equipment between different unloading locations. 
Accordingly, providing efficient and cost effective service of loaded river barges needs appropriate 
allocation plan for handling equipment, which means defining sequence of unloading locations that 
should be served by each handling device. 

The problem may be introduced in following way. For a given collection of barges unloading tasks 
find a set of assignments to minimize the sum of the service times including waiting for service and 
handling devices transfer times. The problem of this type may be considered as dynamic handling 
devices allocation problem, where task occurrence times are distributed over a planning horizon, or as 
static problem, where all tasks are already present in the system at the beginning of a planning 
horizon. In this paper we studied generalization of the problem, i.e. dynamic handling device allocation 
problem (DHDAP) where all devices have different relevant characteristics. 

The objective of this problem is minimization of barges service times so that they can spend as 
more as possible time in transporting goods, i.e. by making profit to an owner.  

Remaining of the paper is organized as follows. In the section 2 we give problem formulation and 
relevant literature review. In section 3 we present variable neighborhood search algorithm for solving 
DHDAP. Framework for generating test instances is presented in section 4, while brief comments on 
obtained results and concluding remarks are presented in section 5. 
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2 PROBLEM FORMULATION 

In case of homogeneous set of m handling devices mV ,...,2,1 , DHDAP is formulated on a 

complete, directed and asymmetric graph ),( ENG , where 1,...,2,1,0 nN  is a set of nodes in 

which nodes 0 and n+1 correspond to the depot and 1,0\ nNP  to the set of unloading tasks. 

The set NjijiE ,:,  is set of edges. Weight ijt  is associated to each edge Njiji ,:,  

representing traveling time of a device over the edge. To each node Pi  there is a time window 

associated with it. However, in the case of DHDAP time windows impose only the earliest time of 
beginning of unloading service, defined by barge occurrences. Therefore, there is only left hand side 

of time window of task i, represented with parameter ie , while the right side ( il ) is supposed to be 

infinite. Additionally, unloading service time, is , is also associated to each node Pi . The objective 

of homogeneous DHDAP is to minimize the sum of time all nodes wait until the end of service by 
identifying set of m device routes such that all nodes from P are visited exactly once by exactly one 
route while respecting time window constraints and service times. Device routes start at node 0 and 

end at node n+1. Parameters s and e for set of nodes 1,0 n  are equal to zero.  

However, since unloading devices differ in both traveling and unloading speed, previously 
formulated problem must be generalized by considering heterogeneous set of m devices 

mV ,...,2,1 . Therefore, heterogeneous DHDAP is formulated on a graph G where set of edges E  is 

replaced with set NjiVvjivE ,,:,,  meaning that between each pairs of nodes 

Njiji ,, there are m different edges exclusively dedicated to each member of V. Accordingly, 

weight v
ijt , representing traveling time of a device v between nodes i and j, is associated to each edge 

in E, as well as unloading service time of device v, v
is , is associated to each node in N. The objective 

of the heterogeneous DHDAP is the same as in the homogeneous case. 
Due to cumulative nature of objective function, DHDAP is very similar to the set of problems known 

in literature by names traveling repairmen problem (TRP), delivery man problem, school bus routing 
problem, minimum latency problem and cumulative capacitated vehicle routing problem. 

As for the literature on DHDAP, there are only a few papers regarding gravel unloading devices 
control. In the [1] authors formulated the Handling Devices Allocation Problem – HDAP. They, 
considered static case of HDAP (SHDAP) and presented two approaches for its mathematical 
formulation. First one is based on three-dimensional assignment problem, while the second one is 
based on similarities of SHDAP and the Static Berth Allocation Problem.. Additionally, authors 
presented a three step heuristic algorithm to solving SHDAP (CLASORD – CLustering ASsignment 
ORDering). [2] and [3] formulated dynamic version of the problem (DHDAP) and gave two 
mathematical formulation of the problem. 

When similar problems, such as class of the TRP problems, are respected, situation about 
previous researches is not much better. Namely, the literature on mTRPTW, which is the closest 
problem to the heterogeneous DHDAP, is very limited, as well. To the best of our knowledge the only 
paper regarding mTRPTW is the one from [4] in which the author solved the problem of operational 
control of automated guided vehicles (AGV) fleet for different conditions of internal transportation 
system, such as off-line and on-line control, dwell point strategies, demand intensities, etc. In case of 
off-line control author proposed mTRPTW mixed integer linear programming (MILP) model for 
homogeneous fleet of AGVs. Since mTRPTW, as generalization of TRPTW, is NP-hard proposed 
model is used only for small problem instances. For medium and large instances author proposed 
insertion based algorithm. 

Literature regarding TRPTW is also very limited and consists of two papers. In the first one, [5], 
author presented polynomial algorithms or NP-completeness for some special cases of TSPTW and 
TRPTW. Author showed that in case of TRPTW in which only tasks’ release times are imposed, which 
is the case of the problem considered in this paper, problem is strongly NP-complete even if number 
of nodes is bounded to one. In the second paper, [6], authors give arc flow and sequential assignment 
based MILP formulations of the TRPTW. In a case of the second formulation in which all time windows 
are open, except the one in a depot, authors performed polyhedral study. For solving TRPTW authors 
presented both, exact and heuristic algorithms.  
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From previously said it is obvious that HDAP belongs to a class of complex optimization problems 
whose effective implementation in solving real system problems implies development of efficient 
(meta)heuristic algorithms. Therefore, in this paper we present relatively new solution procedure 
based on systematic changes of solution’s neighborhood structures and compare it’s performances to 
two other solution procedures. 

3 VARIABLE NEIGHBORHOOD SEARCH METAHEURISTICS 
VNS is relatively new [7,8,9] metaheuristic framework for developing heuristics algorithms that 

has intensively been used in solving variety of combinatorial optimization problems. It is based on 
straightforward facts that local optimum of one neighborhood structure does not have to be local 
optimum of some other neighborhood structure, that global optimum is local optimum of all 
neighborhood structures, and that for many problems local optima of one or several neighborhood 
structures are close to each other. Therefore, due to the expectation of finding improved solution in a 
neighborhood structure of the current solution x , VNS is based on systematical exploration of 

maxk neighborhood structures of the current solution ( max,...,2,1),( kkxNk ).  

Neighborhood structures are changed sequentially until better solution is found. Afterwards, 

1N structure is explored with respect to the new best solution. However, exploration of k
th
 structure is 

realized in one of three different ways: deterministic, stochastic and both deterministic and stochastic. 

In the deterministic case, exploration of )(xN k is executed either until the local optimum of the 

structure is found or only until the first better solution is reached. The former case is called best 
improvement strategy, while the latter one is called first improvement strategy. This type of 
neighborhood structure search algorithms is called variable neighborhood descent (VND) algorithm 
and its first improvement variant, implemented in this research, is shown in form of a pseudo code as 
algorithm 1. 

Stochastic exploration of )(xN k implies selection of random point ( x ) within kN and comparison 

with current best solution ( x ). If x  is not better than x , neighborhood structure is changed 

( 1kk ) and new random point, now within )(1 xN k is selected. This type of VNS algorithm is 

called reduced VNS (RVNS) because, oppositely from VND, it does not perform deep exploration of 

neighborhood structures around x . This drawback is eliminated by including VND as a part of the 

algorithm. Combined algorithm is known as a basic VNS and represents mixture of deterministic and 
stochastic exploration of neighborhood structures. Framework of basic VNS used in this paper is 
shown in form of pseudo code as algorithm 2. 

 

Algorithm 1: First improvement Variable Neighborhood Descent algorithm 

Initialization Select set of neighborhood structures, lN ),...,2,1( maxll , to be 

used in search; find an initial solution x . 

Set 1l  

Repeat following steps until maxll  

(a) Exploration of neighborhood. If oN l , select next neighbor, x , from 

))(( xNxN ll ; else, set 1ll  

(b) Move or not. If x is better then x , set xx , 1l ; else set 

xNN ll \  

 

 
VNS performs extensive exploration of solution space regions by executing VND algorithm, while 

trap of falling into local optima is avoided by implementing RVNS algorithm, i.e. by random selection of 
regions within neighborhood structure of currently the best solution. Procedure of random selection of 
regions is called shaking, or perturbation. It is important to emphasize that neighborhood structures 
used in VND algorithm and shaking procedure does not have to be identical and that final solution is 
optimum with respect to neighborhood structures from both VND and shaking procedures. 

Another important aspect of implementing VNS is neighborhood structure relation. Namely, 
although from VNS pseudo code it can be concluded that neighborhood structures are independent, 
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sequences of nested neighborhood structures are frequently implemented. Such structures imply that 

each structure in sequence is subset of the following structure, i.e. 
max21 kNNN . 

 
 

Algorithm 2: Basic Variable Neighborhood Search algorithm 

Initialization Select set of neighborhood structures, kN ),...,2,1( maxkk , to be 

used in search; execute RVNS for obtaining an initial solution x ; choose 

stopping condition 
Set 1k  

Repeat following steps until maxkk  

(a) Shaking. Select a solution x  from neighborhood structure of x , 

)(xNx k  

(b) Local search. Apply some local search (VND) with x as initial solution. 

Obtained local optimum is marked as x . 

(c) Move or not. If x is better then x , set xx , 1k ; else set 1kk  

 

 
Like in many other problems that imply use of multiple task executers, DHDAP solutions are 

represented as ordered sets of task indices -
vH  served at m devices where stands

Vv

v nH . 

vH denotes cardinality of set H
v
 , i.e. number of tasks served by device v. Objective function of a 

solution f(x) is calculated according to the expression (1). 
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Where notation is the same as in section 2 and v
ih  refers to the index of the task that is on the 

i
th
 position in set 

vH . For example, if 3H = {3,5,2,6} then 3
1h =3, 3

2h =5, 3
3h =2 etc. Task finish times, 
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Due to their wide use, a lot of solution transformations forming neighborhood structures can be 
found in a literature. All of neighborhood structures we use in our VNS are already known structures 
whose implementation is improved by adjustment to mTRPTW. VND algorithm we use in this paper 
explores three independent neighborhood structures generated by heuristics found in[10]: 

Insertion heuristics includes execution of Or-opt moves on each device’s set of tasks with aim to 
improve solution by reordering current sequence of execution. Reordering implies removal of one, two 
and three adjacent tasks from existing execution sequence and their insertion to all possible positions 
in remaining task sequence, excluding their original position. All possible moves of this type, 

performed for each device separately, form neighborhood structure 1N . Figure 1a presents example 

in which tasks j and k served after task i prior to insertion move are inserted between tasks j and m 
afterwards insertion task. 

Swap heuristics (Figure 1b), like in case of 1N , keeps the same structure of the solution 

regarding number of tasks served on each device. Swap move tries to find improved solution by 
exchanging a task served on its device with tasks served on all other devices. Execution of this move 

for each task on all devices generates neighborhood structure 2N . An example of swap move is 
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presented on figure 3b where it can be seen that after swap move tasks k and l exchanged positions 
in sequences on which they ware served before swap move. 

Relocation heuristics (Fig 1c) forms neighborhood structure 3N by changing existing structure 

of currently the best solution. Namely, relocation move tries to improve solution by removing a task 
form a device where it is served and inserting it at all possible locations on other devices. Structure 

3N is formed after relocation move is executed for all tasks in the best solution. An example of 

relocation move is presented on figure 3c where task l, served between tasks j and n, is moved to be 
served by another device between tasks k and m. 

 

Figure 1  Neighborhood structures used in VND algorithm 

For shaking procedure we use two sets of nested neighborhoods:  
Random swap heuristics chooses next region for exploration by random selection of two tasks 

for interchange. This procedure is expansion of swap heuristics from VND since set of tasks for 
interchange with selected task is not limited to tasks served by other devices. Nested neighborhood 

structures kN ( 1
max,...,2,1 kk ) are formed by successive implementation of random swap algorithm.  

Worst relocation heuristics selects next regions for local search in two steps. In the first step, a task 
with the largest waiting time till the end of service (worst task) is removed from existing solution. 
Afterwards, from set of all possible insertions, excluding insertion to the previous location, removed 
task is inserted into position with the lowest objective function value. Like in case of random swap 

heuristics nested neighborhood structures kN ( 2
max

1
max

1
max

1
max ,...,2,1 kkkkk ) are formed by 

successive execution of worst relocation heuristics.  

Numbers of nested structures, 1
maxk  and 2

maxk , as in case of MSVND algorithm, are determined 

from results of pilot studies resulting in best performances for values of parameters equal to eight. 

4 COMPUTATIONAL EXPERIMENTS 
Set of 45 randomly generated instances is formed on example of Belgrade service area (figure 

2) consisting of 20 gravel unloading locations. We considered cases with equal chance of task arrivals 
at each location and with uniform distribution of task inter arrival times over planning horizon. Each 
task implies need for unloading 1000 tons of gravel. Devices used for gravel unloading belong to one 
of three different classes whose relevant characteristics are presented in table 1.  Following series of 
device classes {I, II, III, II, III, II, III, I, II, III} corresponds to classes of devices making fleets of 2, 5 and 
10 devices used for executing unloading tasks. It is supposed that all devices are available for service 
at the beginning of planning horizon. 

 
Table 1  Characteristics of unloading device classes 
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Class Transfer  
speed 
[km/h] 

Unloading  
capacity 
[t/h] 

I 6 100 
II 5 150 
III 4 200 

Beside VNS algorithm, efficiency of Insertion heuristics [4] is tested as the only heuristic 
algorithm used so far for solving mTRPTW. Additionally, we tried to obtain optimal solutions of small 
size problem instances (10 tasks) by using branch and bound (B&B) algorithm implemented in CPLEX 
12.2 with limits of 512MB of RAM for tree structure and one hour for running time. However, due to 
high complexity of the problem only one optimal solution, bolded in table 2, is achieved.  

 

Figure 2  Spatial distribution of gravel unloading location in the case of Belgrade, Serbia 
 

All test runs are executed on Windows XP OS powerd by AMD Phenom II 2.61 GHz processor 
with 1GB of RAM while all coddings are done in Python 2.5. 

 
Table 2  Results of instances containing 10 unloading tasks 

 B&B VNS Insertion 

m inst objective Δobj [%] T [s] Δobj [%] T [s] Δobj [%] T [s] 

2 1 195.3823 0.0% 3008.44 0.0% 0.80 0.000% <0.01 

2 189.0527 0.0% 3201.25 0.0% 0.78 1.397% <0.01 

3 202.1763 0.0% 3058.92 0.0% 0.78 0.542% <0.01 

4 196.2127 0.0% 3375.86 0.0% 0.81 0.356% <0.01 

5 181.267 0.0% 3689.45 0.0% 0.87 7.457% <0.01 

 Average 0.0% 3266.78 0.0% 0.81 1.95% <0.01 

5 1 64.17417 0.0% 1585.16 0.0% 0.92 6.042% 0.02 

2 62.10733 0.0% 1487.70 0.0% 0.87 10.896% <0.01 

3 65.61867 3.08% 2011.20 0.0% 0.86 5.547% <0.01 

4 66.52917 0.0% 1821.41 0.79% 0.88 13.649% <0.01 

5 59.65999 0.0% 1280.09 0.0% 1.00 5.008% <0.01 

 Average 0.62% 1637.11 0.16% 0.90 8.23% 0.004 

10 1 54.62417 0.388% 1908.63 0.0% 1.15 1.624% <0.01 

2 54.43017 1.492% 158.20 0.0% 1.04 1.174% <0.01 

3 53.30733 0.0% 6075.91 1.61% 1.02 6.893% <0.01 

4 54.48233 0.0% 3936.48 0.0% 1.08 1.285% 0.02 

5 51.7057 0.0% 3026.53 1.8% 1.21 1.801% 0.02 
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  Average 0.38% 3021.15 0.68% 1.10 2.56% 0.01 

In cases of B&B and Insertion algorithms instances are solved once, while in the case of the 
VNS, due to stochastic nature of algorithm, solution procedure is repeated five times. Summarized 
results for small size problem instances are presented in table 2, while results for larger instances are 
given in tables 3 and 4.  
In case of larger problem instances, number of tasks considered in an instance is given in column “n” 
of tables 3 and 4. Average time of an algorithm run is presented in column “T” of table 2, as well as in 
table 4, for larger problem instances. Table 2’s column “objective” contain values of the best objective 

values of instances ( bestf ), achieved over all instance runs for considered fleet size. Relative gap of 

an algorithm’s best result ( f ) from bestf  is given in column “Δobj”, for each algorithm. “Δobj” is 

calculated by expression (3). 

%100obj
best

best

f

ff
 (3) 

Table 3 contains only data about best solution found by appropriate procedure. However, 
because VNS outperformed Insertion heuristics for every problem instance, instead using “objective“ 
column, like in case of table 2, part of table 3 regarding VNS’s results contains values of the best 
solution’s objective function. Part of table 3’s results, regarding results of Insertion algorithm, contains 
values of relative gap to the solution of VNS, i.e. it contains information like in “Δobj” column of table 2.  
Table 4 contains information about average time of algorithm runs for larger problem instances, like in 
“T” column of table 2.  

Table  Values and gaps[%] of best achieved solutions 

 VNS Insertion 

n inst 2 5 10 2 5 10 

25 1 928.77 165.99 132.68 4.43% 14.92% 0.84% 

2 967.03 177.73 137.57 2.46% 19.96% 2.30% 

3 1001.60 181.80 136.70 7.82% 30.86% 2.43% 

4 996.00 183.53 136.10 5.79% 16.21% 1.85% 

5 960.61 182.30 135.72 5.06% 20.12% 3.10% 

Average[%] 5.11% 20.41% 2.11% 

50 1 3660.22 389.89 276.02 4.00% 44.68% 1.82% 

2 3461.11 343.03 271.03 1.57% 28.51% 2.57% 

3 3690.70 396.57 276.23 3.66% 41.99% 2.59% 

4 3727.83 424.44 273.24 4.01% 35.87% 2.60% 

5 3527.05 384.18 273.04 3.22% 33.16% 3.04% 

Average[%] 3.29% 36.84% 2.53% 

Table 4  Average running times for large size instances [s] 

 VNS Insertion 

n inst 2 5 10 2 5 10 

25 1 15.01 15.28 15.52 0.01 0.02 0.03 

2 19.20 13.70 9.49 0.02 0.02 0.02 

3 19.97 18.72 10.75 0.01 0.02 0.02 

4 17.98 17.46 11.98 0.02 0.01 0.02 

5 16.47 17.90 15.72 0.01 0.02 0.02 

Average  17.73 16.61 12.69 0.02 0.02 

50 1 348.36 171.84 226.65 0.08 0.09 0.11 

2 313.21 250.41 176.39 0.08 0.08 0.11 

3 385.83 192.77 171.64 0.08 0.08 0.11 

4 176.27 195.59 205.05 0.08 0.09 0.09 

5 344.38 267.43 183.60 0.08 0.09 0.11 

Average  313.61 215.61 192.67 0.08 0.09 
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5 CONCLUSIONS 
From content of table 2 it can be noticed the influence parameter m, i.e. number of available 

unloading devices,  has on complexity of the DHDAP. Namely, as m increases complexity of the 
problem increases as well, so that B&B algorithm was not able neither once to solve problems with ten 
tasks to optimality for the cases when m was larger then two. However, beside larger solution space, 
increase of parameter m, i.e. increase of the number of devices in system, causes potential existence 
of multiple optimum solutions. Especially in cases when capacity of available devices exceeds 
required capacity and if there are several devices with the same relevant performances, meaning that 
mutual changes of devices leads to the same objective functions. Therefore, due to larger number of 
optimal solutions in solution space there is slight larger chance of finding it. According to that, 
improvement of Insertion’s results for the case of m=10 compared to other m values is not surprising.   

 
 
As it was expected, in cases of larger problem instances, VNS outperformed the Insertion 

heuristics in all problem instances. This performance indicates necessity of further research efforts in 
order to improve quality of obtained solutions, as well as to reduce running time of VNS.   

Since motivation for researching this problem originated from need of controlling system for 
unloading gravel from barges, intentions for future research are related to implementation of 
algorithms in such a system. That implies future research should be focused on additional increase of 
time efficiency of VNS algorithm, which might be achieved by consideration of additional neighborhood 
structures. Next direction for future research is related with testing efficiency of algorithms belonging to 
other classes of metaheuristic algorithms, for example genetic algorithms, ant colony optimization, bee 
colony optimization, particle swarm optimization etc. Finally, third direction for future researches 
related to DHDAP makes it closer to decisions made by dispatcher in real systems, because it 
includes inventory management within the problem formulation. Namely, in order to eliminate 
inventory shortages on unloading locations, dispatcher controlling a fleet of unloading devices makes 
device to task allocation decisions not only by respecting  unloading devices and barges related 
information, but also by respecting information related to inventory levels and consumption rates of 
unloading locations. By this kind of decision making, quality of service is increased, but on the other 
side obtaining of efficient solutions becomes more complicated. 
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