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1   INTRODUCTION  
 
 Planning process of transportation service typically consists of several distinctive stages. 
For example, planning process of public transport service has 4 major parts:  
network design (routing), timetabling, vehicle scheduling, crew scheduling and rostering. 
Similar pattern with separate stages can be observed also in freight transportation planning. 
In real world sized transportation systems, each planning stage is a complex task on its own. 
Therefore, the stages are executed sequentially, usually in direction from the strategical level 
to the operational level. The stages are interconnected and the output of one stage is an input 
of the next stage. Moreover, the stages have different, often conflicting objectives. While 
some stages of the planning process focus more on the customer (passenger in case of public 
transport), other tend to concentrate more on the transport company's view. Typical example 
can be maximizing transport service quality mainly determined by network design and 
timetabling in public transport, and simultaneously minimization of cost related to vehicle and 
crew scheduling. One can see, that ideally the whole planning process should be optimized to 
a global optimality instead of local objectives of separate planning stages. In the 
transportation research field, there are few works integrating timetabling and scheduling. 
Examples include Periodic Event Scheduling problem for railway with partial integration of 
other planning aspects in [1], an approach using iterated local search in [2] and [3] .  
The objective of this paper is to discuss integrated planning approach employing 
multiobjective evolutionary algorithm. Rest of this paper is organized as follows: in next 

Abstract: This paper is discussing the integration of timetabling and vehicle scheduling 
stage of the transportation planning process with implementation of evolutionary 
multiobjective genetic algorithm (NSGA-II). Test case in public transport with minimization 
of the transfer time of the passengers in transfer node along with minimization of the 
number of vehicles needed to operate such timetable is presented. Other applications in the 
freight transport field are also discussed. Developed solution proposes that it is able to 
optimize conflicting objectives of passengers or customers and transportation company 
simultaneously. 
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section, basic theory on multiobjective optimization and multiobjective genetic algorithm 
NSGA-II is presented. Thereafter, application of this approach both in public and freight 
transportation is discussed. 
 
2 MULTIOBJECTIVE OPTIMIZATION AND EVOLUTIONARY ALGO RITHMS  

 
In contrast to single-objective optimization, multiobjective optimization deals with 

several objective functions. General multiobjective optimization problem can be defined as 
follows [4]: 
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where k is the number of objective functions, m is the number of inequality 

constraints, and e is the number of equality constraints. A solution 
nRx∈ is a vector of n 

decision variables in the solution space X: x = {x1, x2, ..., xn}. The objective is to find a vector 

x* that minimizes a given set of K objective functions { })(,),()( **
1
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Usually, there is not just a single solution to the multiobjective optimization problem, 

but more solutions can be optimal. Then the goal of multiobjective optimization is to find 
possibly all solutions each of which minimizes the objective functions at an acceptable level. 
The most used definition of optimality, that is when the solution is defined as optimal, is 
Pareto optimality. 

 
2.1 Concept of Pareto optimality 

A solution Xx ∈1 is Pareto optimal if there is no other solution Xx ∈2  such that 
f(x2) ≤ f(x1), and fi(x2) < fi (x1) for at least one function [4]. 

This Pareto optimal solution in the objective space Z is called non-dominated. A 
Pareto-optimal solution can not be improved in any objective without worsening in at least 
one other objective. The all Pareto optimal solutions in solution space X constitute the Pareto 
optimal set.  

The corresponding values of the objective functions of the Pareto optimal solutions in 
the objective space constitute Pareto front.  

Assume two objective functions, f1, f2. Then Fig. 1 shows the Pareto front which is 
highlighted in objective space. For example, solution i is dominated by solutions c, d and e. 
Solutions f, g and h are dominated by only a single solution a, b, b, respectively. The Pareto 
optimality concept means that all Pareto optimal solutions are equally optimal, i.e. we can not 
say solution b is better than solution a, for example. 
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Fig. 1 Pareto front in objective space 

 There are several approaches how to tackle multiobjective optimization problem. Some 
of the most well known include Weighted sum method, Lexicographic method, in which the 
objective functions are arranged in order of importance, Weighted product method, or 
Multiobjective evolutionary algorithms. Introduction an review of multiobjective evolutionary 
optimization can be found in [5] and [6]. 
  
2.2 Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) 
 One of the evolutionary algorithms adapted to multiobjective optimization is well tested 
and computationally efficient Fast Non-dominated Sorting Genetic Algorithm NSGA-II by 
Deb [7]. 
Evolutionary algorithms are broad category of optimization algorithms (including Genetic 
algorithm and Differential evolution) which use a population based search. The population 
iteratively evolves with each new generation. Traditional evolutionary algorithms are single-
objective in which the fittest individual (with highest objective function value) represents the 
single suboptimal solution. The fact that evolutionary algorithms work with multiple solutions 
at time make them very suitable for multiobjective optimization. 
NSGA-II evaluates individual solutions by dominance rank and crowding distance instead of 
objective function value. Crowding distance promotes search of solutions uniformly spread 
along the Pareto front. The crowding distance is used in following manner (Fig. 2): 
Step 1: The population is ranked by dominance rule and non-dominated fronts F1, F2,...,FR are 
identified.  For each front Fj, j = 1, …, R repeat Steps 2 and 3. 
Step 2: The solutions in front Fj  are sorted in ascending order. The sorting is repeated for 

each objective function f. Let jFl =
 and xi,k represent the i-th solution in the sorted list with 

respect to the objective function fk.. Assign cdk(x1,k) = ∞ and cdk(xl,k) = ∞, and then assign for i 
= 2, …, l-1 : 
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Step 3: To compute the total crowding distance cd(x) of a solution x, the solution’s crowding 

distances with respect to each objective are summed, 
∑=

k
k xcdxcd )()(
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This crowding distance measure is used  in  crowded tournament selection operator. That is, 
between two solutions with differing nondomination ranks, we prefer the solution with the 
lower (better) rank. Otherwise, if both solutions belong to the same front, then we prefer the 
solution that has higher crowding distance. A solution with a higher value of this distance 
measure is less crowded by other solutions [7]. 

 
Fig. 2 Crowding distance calculation [5] 

 
3 INTEGRATED TIMETABLING AND SCHEDULING IN PUBLIC 
TRANSPORTATION 
 
 In this section, integrated model for timetabling and vehicle scheduling in public 
transportation is presented. Multiobjective evolutionary algorithm enables that individual 
objective functions are optimized simultaneously. The basic structure of the model is depicted 
in Fig. 3. 

 
 
 
 Decision variables determine the timetables of the lines. The timetable is constructed 
from decision variables according to the type of timetable. If the timetable is periodical, only 
the offset of the first departure is needed and the other departures are calculated by adding 

Timetable 

Decision 
variables 

f(timetable) 

Multiobjective 
evolutionary algorithm 

Timetabling 

Vehicle scheduling 

f(schedule) 

Fig. 3 Structure of the integrated model 
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multiples of headway to the first departure. In other cases, the decision variables can be exact 
departure times or offsets from initial timetable. Constructed timetable serves as an input to 
the vehicle scheduling. The vehicle scheduling can be done by some scheduling model such 
as assignment model, set partitioning model, time-space networks or by heuristics. In the 
same time, timetables and vehicle schedules are evaluated and the values of the objective 
functions are passed over to the evolutionary algorithm. The evolutionary algorithm calculates 
the dominance ranks and crowding distances and then iteratively repeats the cycle in order to 
find Pareto optimal values of the decision variables. 
The objective function of the timetabling can consist of: 

� transfer time of the passengers, 
� waiting time on the stops, 
� other measures such as evenness of the headway, 
� their combination. 

The vehicle schedules can be evaluated in terms of: 
� number of vehicles needed, 
� length of deadhead trips, 
� waiting time, 
� their combination. 

 
3.1 Test case with one transfer node 
 Simple example with 4 lines and periodic timetable presented in [8] has two objective 
functions. The first objective function f1 returns the tranfer time of passengers: 
 

Minimize 
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Where the transfer time is a difference between the arrival of k-th bus/tram of i-th route and 

the arrival of l-th bus/tram of j-th route, multiplied by number of transfering passengers   
ij
klc  

and summed over all buses/trams of all routes . The term αij can be either 0 or 1 according to 
the possibility of transfer between routes i and j.  Constraint (1) ensures that transfer time is 
greater or equal than 1 minute, constraint (2) states that αij can take binary values and 
constraint (3) ensures that the arrivals  have integer values. The constraint (4) ensures that the 
arrivals are within the time period of 60 minutes. 
The second objective function f2 evaluates the vehicle schedule in terms of number of vehicles 
needed to operate the given timetable. Since no interlining is allowed for the vehicles, number 
of vehicles N to serve one line with headway hi can be calculated by following formula: 
 

i
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Where lAB, lBA are travel times between terminal stops A and B, 
A
iir 1, + , 

B
iir 1, +  is the difference 

between the arrival tAi, resp. tBi+1 and departure tAi+1, resp. tBi from the terminal.  
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The algorithm found two solutions in terms of objective functions. The Pareto front of only 
two points is shown in Fig. 5. The first point has transfer time f1 = 60 minutes and number of 
vehicles is f2 = 21. The second point has worse transfer time f1 = 64 minutes but lower number 
of vehicles f2 = 20.  
 

 
Fig. 4 Pareto front for test case 

 
 

4 FURTHER EXTENSIONS IN FREIGHT TRANSPORTATION 
 Integrated approach presented above can be applied also in freight transportation. 
Timetabling and vehicle scheduling in public transportation have parallels in freight transport 
planning. Especially, this is true when vehicles operate in lines. One example that can 
illustrate this methodology, is transportation of ready mixed concrete from concrete batch 
plant to the construction site. Usually, total volume of concrete which has to be transported in 
certain time period is known in advance. Since the capacity of the vehicles is much smaller 
than the total volume of the concrete, several deliveries are needed. Depending on the route 
length and total concrete volume, vehicles can make several deliveries. This transportation 
resembles one line with certain headway. Other factors such as variable travel times due to the 
traffic conditions or variable unloading time at the construction site can complicate the 
process. The key to the concrete transportation problem is the timetable. There are several 
objectives that should be satisfied: 

� minimization of used vehicles, 
� minimization of total duration of process, 
� minimization of waiting times of vehicles in the construction site, since no or limited 

simultaneous unloading is allowed, 
� minimization of idle time of construction staff due to the waiting for the concrete 

arrival. 
Similarly as in public transport, there are conflicting objectives of the transportation provider 
and the customer. Therefore, simultaneous optimization of objectives is desirable. The use of 
Pareto based optimization can help the transportation planner to better explore the alternatives 
available and to choose the suitable trade-off choice. 
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5 CONSLUSION
 Optimization techniques for solving large and computationally hard problems like 
evolutionary algorithms enable integrate previously separate stages of the transportation 
planning process. Furthermore, employing multiobjective approach allows to take multiple 
objectives into account. This way the conflicting objectives of different stakeholders such as 
passengers or customers and transportation provider can be optimized simultaneously. 
Exploring Pareto optimal set helps the decision maker to investigate various scenarios in 
comparison with traditional methods such as weighted sum method. 
Further work will be concentrated on applying this method to real world problems and 
employing advanced vehicle scheduling techniques such as time-space networks or heuristics. 
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