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Abstract: This paper is discussing the integration of tinbéitay and vehicle schedulin
stage of the transportation planning process withplementation of evolutionar,
multiobjective genetic algorithm (NSGA-II). Tessean public transport with minimizatio
of the transfer time of the passengers in transfede along with minimization of the
number of vehicles needed to operate such timeialpeesented. Other applications in the
freight transport field are also discussed. Develbsolution proposes that it is able fo
optimize conflicting objectives of passengers ostaomers and transportation company
simultaneously.
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1 INTRODUCTION

Planning process of transportation service typicabnsists of several distinctive stages.
For example, planning process of public transpemtise has 4 major parts:
network design (routing), timetabling, vehicle sdhkéng, crew scheduling and rostering.
Similar pattern with separate stages can be obdedge in freight transportation planning.
In real world sized transportation systems, eaenmhg stage is a complex task on its own.
Therefore, the stages are executed sequentiallgllysn direction from the strategical level
to the operational level. The stages are intercctiedeand the output of one stage is an input
of the next stage. Moreover, the stages have differoften conflicting objectives. While
some stages of the planning process focus moraeonoustomer (passenger in case of public
transport), other tend to concentrate more onrdmesport company's view. Typical example
can be maximizing transport service quality maidigtermined by network design and
timetabling in public transport, and simultaneousiyimization of cost related to vehicle and
crew scheduling. One can see, that ideally the avptainning process should be optimized to
a global optimality instead of local objectives ekparate planning stages. In the
transportation research field, there are few warkegrating timetabling and scheduling.
Examples include Periodic Event Scheduling problenrailway with partial integration of
other planning aspects in [1], an approach useratied local search in [2] and [3] .
The objective of this paper is to discuss integrai@anning approach employing
multiobjective evolutionary algorithm. Rest of thisper is organized as follows: in next
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section, basic theory on multiobjective optimizatiand multiobjective genetic algorithm
NSGA-Il is presented. Thereafter, application afthpproach both in public and freight
transportation is discussed.

2 MULTIOBJECTIVE OPTIMIZATION AND EVOLUTIONARY ALGO  RITHMS

In contrast to single-objective optimization, mailttjective optimization deals with
several objective functions. General multiobjectoimization problem can be defined as
follows [4]:

Minimize f(X) = [£,00, F,(%),-.., T, ()]
Subject to:
9,(0<0, j=12..,m,

h(x)=0, 1=22...,e
where k is the number of objective functionsp is the number of inequality

constraints, ane is the number of equality constraints. A soluti$h/ R"is a vector ofn
decision variables in the solution spatex = {xi, X, ..., X,}. The objective is to find a vector

x* that minimizes a given set Kfobjective functions’ (X ) =1f1(x )., T (X').

Usually, there is not just a single solution to theltiobjective optimization problem,
but more solutions can be optimal. Then the goaiatftiobjective optimization is to find
possibly all solutions each of which minimizes tigective functions at an acceptable level.
The most used definition of optimality, that is whthe solution is defined as optimal, is
Pareto optimality.

2.1 Concept of Pareto optimality

A solution s U Xis pareto optimal if there is no other solutidn™ X such that
f(x2) < f(x1), andfi(xp) <fi (x1) for at least one function [4].

This Pareto optimal solution in the objective spaceés called non-dominated. A
Pareto-optimal solution can not be improved in abjective without worsening in at least
one other objective. The all Pareto optimal sohgion solution spack¥ constitute the Pareto
optimal set.

The corresponding values of the objective functiohthe Pareto optimal solutions in
the objective space constitute Pareto front.

Assume two objective function§, f,. Then Fig. 1 shows the Pareto front which is
highlighted in objective space. For example, sohlutiis dominated by solutions d ande.
Solutionsf, g andh are dominated by only a single solutiamb, b, respectively. The Pareto
optimality concept means that all Pareto optimaltsans are equally optimal, i.e. we can not
say solutiorb is better than solutioa, for example.
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Fig. 1 Pareto front in objective space
There are several approaches how to tackle mjdttbe optimization problem. Some
of the most well known include Weighted sum methogkicographic method, in which the
objective functions are arranged in order of imaoce, Weighted product method, or
Multiobjective evolutionary algorithms. Introducti@n review of multiobjective evolutionary
optimization can be found in [5] and [6].

2.2 Fast Non-dominated Sorting Genetic Algorithm (ISGA-II)

One of the evolutionary algorithms adapted to mbjective optimization is well tested
and computationally efficient Fast Non-dominatedti8g Genetic Algorithm NSGA-II by
Deb [7].

Evolutionary algorithms are broad category of opation algorithms (including Genetic
algorithm and Differential evolution) which use applation based search. The population
iteratively evolves with each new generation. Tiiadal evolutionary algorithms are single-
objective in which the fittest individual (with Higst objective function value) represents the
single suboptimal solution. The fact that evoluéipnalgorithms work with multiple solutions
at time make them very suitable for multiobjectogimization.

NSGA-II evaluates individual solutions by dominamaek and crowding distance instead of
objective function value. Crowding distance promsosearch of solutions uniformly spread
along the Pareto front. The crowding distance &lus following manner (Fig. 2):

Step 1: The population is ranked by dominance ankk non-dominated fronts, F»,...Fr are
identified. For each frorf§j, ] =1, ...,Rrepeat Steps 2 and 3.

Step 2: The solutions in froft are sorted in ascending order. The sorting ieatgal for

o . | =|F, . . , ,
each objective functioh Let ‘ “ andx x represent theth solution in the sorted list with
respect to the objective functidn. Assigncd(xi k) = o0 andcd(X k) =, and then assign for
=2,...,-1:

fk (Xi+1,k) - fk (Xi—l,k)

max min
fk - fk

cd, (%) =

Step 3: To compute the total crowding distandéx) of a solutionx, the solution’s crowding

cd(x) =>cd, (x)

distances with respect to each objective are summed :
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This crowding distance measure is used in crowdathament selection operator. That is,
between two solutions with differing nondominaticanks, we prefer the solution with the

lower (better) rank. Otherwise, if both solutioreddmg to the same front, then we prefer the
solution that has higher crowding distance. A sotuwith a higher value of this distance

measure is less crowded by other solutions [7].

A
f

2

Fig. 2 Crowding distance calculation [5]

3 INTEGRATED TIMETABLING AND SCHEDULING IN PUBLIC
TRANSPORTATION

In this section, integrated model for timetabliagd vehicle scheduling in public
transportation is presented. Multiobjective evaln#iry algorithm enables that individual
objective functions are optimized simultaneouslye basic structure of the model is depicted
in Fig. 3.

Decision

variables Multiobjective

evolutionary algorithm

f(timetable

Timetabling

i f(schedule)
Timetable

y
Vehicle scheduling

Fig. 3 Structure of the integrated model

Decision variables determine the timetables of lthes. The timetable is constructed
from decision variables according to the type ofetiable. If the timetable is periodical, only
the offset of the first departure is needed andather departures are calculated by adding
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multiples of headway to the first departure. Inestbases, the decision variables can be exact
departure times or offsets from initial timetab@onstructed timetable serves as an input to
the vehicle scheduling. The vehicle scheduling loardone by some scheduling model such
as assignment model, set partitioning model, tipees networks or by heuristics. In the
same time, timetables and vehicle schedules areiaged and the values of the objective
functions are passed over to the evolutionary @lgor The evolutionary algorithm calculates
the dominance ranks and crowding distances anditdetively repeats the cycle in order to
find Pareto optimal values of the decision variable
The objective function of the timetabling can cehsi:

= transfer time of the passengers,

= waiting time on the stops,

= other measures such as evenness of the headway,

= their combination.
The vehicle schedules can be evaluated in terms of:

= number of vehicles needed,

» length of deadhead trips,

= waiting time,

= their combination.

3.1 Test case with one transfer node
Simple example with 4 lines and periodic timetaptesented in [8] has two objective
functions. The first objective functidnreturns the tranfer time of passengers:

fy :ZZZZ% (t —t )CE|
Minimize L

Subject to:

(t, —t“)zl Oi ,j,k,l,aij =1
a; 0(01) O i)

tik’tj| DZ+ DI!Jlkll(B)
t.t, 0(0,60) 0i, j

(1)

k)

Where the transfer time is a difference betweenatin@al ofk-th bus/tram oi-th route and
1

the arrival ofl-th bus/tram of-th route, multiplied by number of transfering pasgers Cu

and summed over all buses/trams of all routes .t&hmo; can be either 0 or 1 according to

the possibility of transfer between rouiesndj. Constraint (1) ensures that transfer time is

greater or equal than 1 minute, constraint (2)estahate; can take binary values and

constraint (3) ensures that the arrivals havegarnt@alues. The constraint (4) ensures that the

arrivals are within the time period of 60 minutes.

The second objective functidpevaluates the vehicle schedule in terms of numbeeluicles

needed to operate the given timetable. Since molimihg is allowed for the vehicles, number

of vehiclesN to serve one line with headwhycan be calculated by following formula:

A B
N = IAB BA+ri,i+l+ri,i+l

h

A B

Wherelag, Iga are travel times between terminal stédpandB, i i+ iiv1 s the difference

between the arrivafy, resp1®.; and departuré'.y, resp® from the terminal.
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The algorithm found two solutions in terms of olbjee functions. The Pareto front of only
two points is shown in Fig. 5. The first point Heensfer timef; = 60 minutes and number of
vehicles id, = 21. The second point has worse transfer tirme64 minutes but lower number
of vehiclesf, = 20.

vehicles

21.2

210} .

20.8

20.6

204}

20.2

20.0 .

e 80 61 62 63 64 =

tranfer time
(min.)

Fig. 4 Pareto front for test case

4 FURTHER EXTENSIONS IN FREIGHT TRANSPORTATION

Integrated approach presented above can be apalsad in freight transportation.
Timetabling and vehicle scheduling in public tramsation have parallels in freight transport
planning. Especially, this is true when vehiclesrape in lines. One example that can
illustrate this methodology, is transportation eady mixed concrete from concrete batch
plant to the construction site. Usually, total \akiof concrete which has to be transported in
certain time period is known in advance. Sincedégeacity of the vehicles is much smaller
than the total volume of the concrete, severalvddks are needed. Depending on the route
length and total concrete volume, vehicles can nskesral deliveries. This transportation
resembles one line with certain headway. Otheofacuch as variable travel times due to the
traffic conditions or variable unloading time atetlzonstruction site can complicate the
process. The key to the concrete transportatiobl@no is the timetable. There are several
objectives that should be satisfied:

= minimization of used vehicles,

= minimization of total duration of process,

= minimization of waiting times of vehicles in thenstruction site, since no or limited

simultaneous unloading is allowed,
= minimization of idle time of construction staff due the waiting for the concrete
arrival.

Similarly as in public transport, there are coniitig objectives of the transportation provider
and the customer. Therefore, simultaneous optinizaif objectives is desirable. The use of
Pareto based optimization can help the transpontgtianner to better explore the alternatives
available and to choose the suitable trade-offaghoi

52



Michal Weiszer integrated timetable and scheduling... T&L -20/11

5 CONSLUSION

Optimization techniques for solving large and catagonally hard problems like
evolutionary algorithms enable integrate previousgparate stages of the transportation
planning process. Furthermore, employing multiofbjecapproach allows to take multiple
objectives into account. This way the conflictingextives of different stakeholders such as
passengers or customers and transportation prowider be optimized simultaneously.
Exploring Pareto optimal set helps the decision engk investigate various scenarios in
comparison with traditional methods such as weiistan method.
Further work will be concentrated on applying thnethod to real world problems and
employing advanced vehicle scheduling techniquebk as time-space networks or heuristics.
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