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1 INTRODUCTION 
 

Motivation for this paper comes from the need to investigate performances of one 

specific logistics process in the military branch: field maintenance of heavy equipment 

(trucks, tanks, personnel carriers, artillery items, etc.) in the conditions of high rates of 

demands for maintenance. Main goal of the field maintenance in military units is to sustain 

some level of the unit operational readiness (percentage of ready-to-use equipment). Field 

maintenance process in the brigade-size units (approximately: few hundreds vehicles, few 

thousands troops), could be modelled as multiphase, multi-channel queuing system with 

general types of distribution functions presenting stochastic nature of demands for 

maintenance actions, as well as for servicing itself. While maintenance resources are always 

limited, maintenance demands could grow up to very high values. All this makes 

corresponding queuing model to be very complex. It is hard to obtain analytical, closed-form 

solutions for such queuing models. Monte Carlo simulation supports modelling and analysis 

of complex queuing models, but also brings certain level of errors.  

The main idea of this paper is to use theoretical solution for simple queuing model as 

kind of a benchmark for testing and calibration of the corresponding simulation model. 

However, the real goal is to test and verify simulation methodology, in order to apply it on 

more complex queuing models which for there are no theoretical solutions.       

Abstract: The paper presents capacity of Monte Carlo methodology to produce simulation results with 

respective level of accuracy and controllability. Critical traffic conditions assume saturation and overloading. 

To study them, we have to obtain the transient solutions for queuing system behaviour. Theoretical closed 

forms transient solutions are extremely complex and are subject of various attempts towards simplified 

approximations. Meanwhile queuing simulations suffer from problematic accuracy of simulation results. 

While theory gives absolute accuracy, simulation introduces some level of errors, and the question is how to 

control those errors. Practical interest for studying transient behaviour of queuing systems appears in some 

real applications, as in military missions, logistics, air traffic, etc. 
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Queuing systems, or waiting line systems, are generalized concept which comprises 

client and server entities and theirs relations and rules. A client (customer or service demand) 

arrives to the service channel on a random basis, and his servicing in the server entity is 

stochastic as well. Due to its generality, queuing concept is applicable on many real systems 

and processes in various areas. Queuing theory deals with queuing systems. Theoretical 

support for regular (non-critical) traffic conditions is very well. However, investigation of 

queuing behaviour becomes very difficult for critical traffic conditions because it assumes 

need for transient solutions for queuing behaviour. Monte Carlo simulation is recognized as 

an effective method to overcome theoretical complexities.  

Traffic intensity ( ) in a queuing system is expressed as relation ( = / ) between 

intensity of clients arrivals ( ) and intensity of servicing in a service channel ( ). There can 

be three cases of traffic intensity: normal traffic ( <1); saturation ( =1); and overloading 

( >1). Under “Critical traffic conditions”, (a watchword proposed by Brandao and Porta Nova 

[1]), we assume cases of saturation and overloading. Intuitively, it is clear that after enough 

time there will be enormous queues in the cases of critical traffic conditions. The question is 

how long queuing system can operate holding reasonable queue length and waiting time. 

Finite operational time (the time when system is opened for clients) of some queuing system 

gives a hope that critical traffic conditions could be survived.    

To investigate behaviour of queuing system during finite operational time, we need so 

called transient solutions. Research interest for getting insight in the transient behaviour of 

queuing systems appears in different areas. Applied probability community tries to find a way 

for such closed form transient solutions which are appropriate for practical calculations. This 

was a challenging task for a long period, but still actual. One representative older effort is 

given by Conolly and Langaris [2], and some of the newer papers come from Hlynka, Hurajt 

and Cylwa [3] and Leonenko [4].   

A novel impulse appeared at the Winter Simulation Conference 2010, where 

Kaczynski, Leemis and Drew [5], clearly confirmed existence and importance of the transient 

problem in queuing systems behaviour in the military branch. They suggested a use of both 

approaches: simulation modelling and probability theory, but preferred the last. Some earlier 

studies in the field of air traffic (in general, not only in the military) realized by Peterson, 

Bertsimas and Odoni [6], recognized the importance of transient behaviour of queuing 

systems.  

In the military branch, high tempo and short but intensive and unpredictable dynamics 

of events in contemporary battlefield, raises specific issues in the simulation modelling not 

only for logistics processes, but also for other aspects for military engagements. In 

constellation with high precision weapons and new combat concepts like swarming (presented 

by Jankovic [7]), a request arises for investigation of conflicts of short durations and high 

intensity.     

Here, we present a comparison of simulation results versus theoretical ones for 

selected time-dependent state probability for M/M/1 queuing system. We run the model for 

two different traffic intensities ( = / ): saturation ( =1); and overloading ( >1). The goal is 

to check potential of Monte Carlo simulation method for generating time-dependent state 

probabilities with high and controlled accuracy. The wider context of this effort is to get 

confidence on specific Monte Carlo method verified in a case of a simple model, for future 

applications in more complex models. Problem of accuracy of simulation results is well-

known and still ongoing research issue in the simulation field.  

Transient regime, as operational mode of queuing systems behaviour, has been in the 

shadow of the steady-state behaviour of queuing systems for a long time. Research interest 

has been dominantly oriented towards stationary regime. However, transient and stationary 

regimes are complementary. Transient phenomenon indicates behaviour of queuing system in 
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a period which precedes the steady-state. Transient behaviour appears at the beginning of 

working cycle of queuing system. And it appears in spite of constant intensities of arrival 

stream ( ) and service rate ( ).   

Practical consequences of transient regime are different values of measures of 

performances from their steady-state values. This is particularly important in situations when 

time interval, characterized by transient regime, is a respective part of the whole period of 

engagement (working time) of queuing systems (QS).   

Perception of the transient problem in the Monte Carlo simulation of queuing systems 

is quite different than it is in a pure theoretical approach. Simulated queuing system cannot 

jump into its steady-state, as it is easy in the theoretical approach. For example, a state’s 

equations for the M/M/n queuing model are the first order differential equations. And, with a 

stroke of the pen you can let the argument (time) to tend to the infinity. Doing so, you skip the 

initial transient period immediately, and reach the steady-state, while state’s equations 

become algebraic instead of differential ones. Simulated queuing model, on the other hand, 

really travel through its transient regime.   

 

 

2 SYSTEM STATES PROBABILITIES  
 

 States probabilities are queuing system primary measures of performances. 

Mathematical model of a queuing system of type M/M/1/∞ is given by a system of differential 

equations (1). Every possible state of queuing system is presented with one differential 

equation (Erlang’s equations, or Kolmogorov-Chapman equations). Those are the following 

differential equations of first order (1): 

)()()( 100 tptptp  

)()()()()( 2101 tptptptp    

                .  .  .                                                                         (1) 

)()()()()( 121 tptptptp nnnn  

.  .  . 

Also, there are: the normalization condition (2), and initial conditions (3). That means 

queuing system will be certainly in one of the possible states in any time moment.    
n

i

i tp

0

1)(                                                                                (2) 

p0 (0)= 1,  p1 (0)= p2 (0)= … = pn (0)= 0                               (3) 

Variables pi(t) present time-dependent probabilities of the queuing system’s states. 

Index i presents the number of clients in a system. The independent variable is time (t). 

Intensity of input client’s stream is λ. Intensity of output client’s stream (servicing) is μ. 

Complete solution of above system of differential equations assumes obtaining states 

probabilities as time-dependent variables. This solution (usually termed as the transient 

solution) actually exists and could be found in many queuing theory books, while Kleinrock 

[8] gives some interesting comments about it. In their essence, transient solutions are 

complete solutions which are valid for any traffic intensity, and for both regimes: initial 

(transient, warm-up, start-up, relaxation) and steady-state (equilibrium). Transient solutions 

assume time-dependent variables. Division of queuing system behaviour on a transient and 

steady-state regime is artificial in some sense. Practically, there is no clear and definite 
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“switching moment” from the transient to the steady-state regime, at least for the models with 

unlimited queues. Instead, that is a continual change across time, more or less long.  

The problem with transient solution lies in the complexity of that solution particularly 

when someone tries to use it in practical calculations. Because of that, transient solutions are 

subject of research aimed towards finding more simplified approximation which will be 

appropriate for practical calculations. Instead of pure but complex theoretical approach, we 

can use numerical methods to solve a system of differential equations. However, numerical 

methods approach becomes cumbersome in case of queuing systems with many possible 

states of queuing system. Besides, this is not the only problem with application of numerical 

methods. In case of other types of queuing systems (non-exponential distributions, queuing 

networks, etc.) it is even difficult to establish system of differential equations. In short, 

regardless do we have, or, we do not have system of differential equations for analytical 

description of behaviour of queuing system, we want to get solutions: time-dependent 

probabilities of possible states of the queuing system under study. Monte Carlo simulation 

methodology has capacity to produce time-dependent solutions under such limitations.   

  

 

3 SIMULATING STATES PROBABILITIES 

 

 Complexity of pure analytical approach or numerical methods application to this task 

could be avoided, by use of Monte Carlo simulation modelling methodology. Nikolic 

proposed a concrete simulation method for simulating states probabilities as time-dependent 

variables [9]. That method (“Automated Independent Replications with Gathering Statistics of 

Stochastic Processes”, shorten as: AIRGSSP) is used here. Practically, we can get numerical 

solutions for time-dependent states probabilities by use of Monte Carlo simulation modelling, 

and without dealing with the system of differential equations itself. This methodological 

capacity could be termed as “Statistical integration of differential equations”, or, which is 

already known in a literature, as “Monte Carlo integration”.  

The goal is to make numerous and independent simulation experiments (designated as 

IR – Independent Replications) and to collect statistics of dynamic variables under study 

(states probabilities). Functional connection among variables of interest is given by formula 

(4), which comes from the basics of the probability theory and mathematical statistics. 

Accuracy of simulation results we perceived through complementary term: maximal error of 

estimation in percents - ; Confidence level on simulation results (confidence coefficient for 

Normal distribution - Zc); Number of IR of simulation experiment (n, sample size); 

Probability (proportion - p) is the entity under study; Complementary variable of the 

probability under study is: q = 1-p.  

zcp

q
n

2
2

100
                                                       (4) 

Depending on a desired accuracy, or confidence level, or the order of magnitude of the 

state probability under study, we can choose various numbers of IR of simulation experiment. 

For example, one thousand IR of simulation run, permit a maximum 24,5 % discrepancy of 

estimation, for probability level of 0,1, and with level of statistical confidence at 0,99: Zc 

(0,99) = 2,58. 

In our example we did next steps (detailed description is given by Nikolic, [9]):   

 Take some fixed number of IR.  

 Make simulation runs with chosen number of IR. 

 Chose high and fixed level of confidence. 

 Calculate maximally permitted error of estimation for a given value of states probability. 
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 Obtain theoretical values for time-dependent state probabilities.  

 Compare and analyze correspond values of simulated and theoretical time-dependent state 

probability.  

 Make conclusion based on comparison results: does or does not simulation 

methodological approach is able to produce output with declared accuracy and confidence.    

 

 

4 MODEL EXAMPLE  

 

 A single channel queuing system of a type M/M/1 with infinite queue has been 

modelled. The system operates for some finite time. Initial condition is: “queuing system is 

empty” (that is: no clients in queue, no clients in service channel). After reaching the end of 

the operational time, system closes. The goal is to obtain time-dependent response of the state 

p0(t): “system is empty”. The principle is the same for all other states probabilities. As a 

referential theoretical values for state probability p0(t), we used results calculated by Conolly 

and Langaris, which are presented in their paper [2].  

Described conceptual queuing model has been developed further as a simulation 

model and prepared for Monte Carlo simulation on a personal computer. A simulation model 

development is crucial step and general methodology is well known. We used here general 

simulation methodology well described by Law and Kelton in their famous book [10]. Being 

applied in different branches, general simulation approaches have been further developed and 

accommodated, according to specific needs of every branch of application. In example, 

Malindzak et al [11], proposed a systematic procedure for simulation modelling of large scale 

logistics systems in an specific real application (mining and metallurgy manufacturing).   

The idea was to repeat execution of the model, that is, to make numerous IR of the 

simulation run. The purpose of numerous IR is to collect many data in order to obtain good 

statistical sample for estimation of desired measures of performances. In this task we make 

three sets of experiments for three different numbers of IR: 1.000; 10.000; and 100.000 IR. 

Doing so, we got selected state probability, p0(t), as time-dependent variable.   

Computational time on a typical PC (2,2GHz, 2RAM) varied due to the experimental 

conditions: it takes few minutes for examples with 1.000 IR; about 15 minutes for 10.000 IR; 

and about two hours for 100.000 IR. For computer implementation of simulation model we 

used student version of GPSS simulation language [12]. 

 

 

5 RESULTS AND ANALYSIS 

 

 After six simulation experiments, we got simulation results. Graphical presentations of 

time-dependent state probability p0(t) is given in Figure 1. All three cases of different number 

of IR (1.000; 10.000; 100.000) were executed for both cases of traffic intensity (saturation and 

overloading). Then, theoretical values for state probability p0(t) were associated for both cases 

of traffic intensities. All this is presented in Figure 1.  

On the basis of three classes of simulation results (in a table form), and corresponding 

theoretical results for p0(t), for a set of six time points (0; T  ; 2T  ;…5T ), we calculated 

percentages for realized discrepancy of the simulation results versus theoretical results. 

Permitted discrepancies are calculated from formula (4) using: theoretical values for p0(t) and 

its corresponding counterpart q(t), a given number of IR, and a level of confidence at “3σ”. 

Realized discrepancies for two traffic intensities are as follows (Table 1 and Table 2).   
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Theorethical vs. three (1.000, 10.000, 100.000 IR) simulated 

time-dependent state probability p0(t)

for two traffic intensities (saturation, overloading)
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Figure 1: Time-dependent state probability p0(t) for two different traffic intensities 

 

(1) Saturation, Table 1, is a case when intensity of input client’s stream (a stream of 

demands for service) is equal to intensity of output client’s stream (nominal capacity of 

service channel to process demands). Realized and permitted discrepancies, Table 1, are in 

good agreement, so, declared accuracy is achieved at a chosen level of confidence in the case 

of saturation.  

 

Table 1: Simulated vs. theoretical p0(t), with percentage error, case of  the saturation 
Queuing model: M/M/1/     

Average service time: T =1/  = 100   Average inter-arrival time: T =1/  = 100 

Time Time-dependent state probability - p0(t) Error -      (% of the theoretical value) 

t 

(in T  , 

as a 

relative 

t. unit) 

Simulation results 

for 3 experiments with 

different numbers of IR 

Theoretical 

results 

(Conoly & 

Langaris, 

1993) 

Realized error 

(%) 

Permitted error 

for “3 Sigma” 

(%) 

10
3
 

IR 

10
4
  

IR 

10
5
  

IR 

10
3
  

IR 

10
4
  

IR 

10
5
  

IR 

10
3
  

IR 

10
4
  

IR 

10
5
  

IR 

0 T  1 1 1 1 0,0 0,0 0,0 0,0 0,0 0,0 

1 T  0,531 0,5255 0,5259 0,523778 1,4 0,3 0,4 9,0 2,9 0,9 

2 T  0,388 0,3869 0,3854 0,385753 0,6 0,3 0,1 12,0 3,8 1,2 

3 T  0,303 0,3124 0,3174 0,318709 4,9 2,0 0,4 13,9 4,4 1,4 

4 T  0,284 0,2768 0,2771 0,277574 2,3 0,3 0,2 15,3 4,8 1,5 

5 T  0,255 0,2446 0,2497 0,249096 2,4 1,8 0,2 16,5 5,2 1,6 

 

 (2) Overloading, Table 2, is a case when intensity of input client streams ( ) is greater 

then intensity of servicing ( ). Then, traffic intensity ( ) is greater than 1. In our experiments 

traffic intensity has a value 2. As time passes the queue becomes longer, and service channel 

should be continually engaged (sized). That means, probability of the state p0(t): “system is 
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empty of clients”, should be zero. The question is when it happens, and how fast this 

probability approach to zero? To answer the question we can look (Figure 1) at the curve 

presenting time-dependent probability p0(t): there are obvious a smaller values for the case of 

overloading comparing it with the other (saturation). Realized and permitted discrepancies are 

in good agreement as it could be noticed from the Table 2 and perceived from Figure 1. 

 

Table 2: Simulated vs. theoretical p0(t), with percentage error, case of  the overloading 

Queuing model: M/M/1/      

Average service time: T =1/  = 100     Average inter-arrival time:   T =1/  = 50                      

Time Time-dependent state probability - p0(t) Error -       (%  of theoretical values) 

t 

(in T  , 

as a 

relative 

time 

units) 

Simulation results 

for three experiments with 

different numbers of IR 

Theoretical 

results 

(Conoly & 

Langaris, 

1993) 

Realized error 

(%) 

Permitted error 

for “3 Sigma” 

(%) 

10
3
 

IR 

10
4
  

IR 

10
5
  

IR 

10
3
  

IR 

10
4
  

IR 

10
5
  

IR 

10
3
  

IR 

10
4
  

IR 

10
5
  

IR 

0 T  1 1 1 1 0,0 0,0 0,0 0,0 0,0 0,0 

1 T  0,299 0,2694 0,26922 0,2676 11,7 0,7 0,6 15,7 5,0 1,6 

2 T  0,137 0,1316 0,13051 0,1303 5,1 1,0 0,2 24,5 7,8 2,5 

3 T  0,08 0,0743 0,07676 0,0764 4,7 2,7 0,5 33,0 10,4 3,3 

4 T  0,067 0,0483 0,04916 0,0489 37,1 1,2 0,6 41,9 13,2 4,2 

5 T  0,043 0,0377 0,03365 0,0329 30,7 14,6 2,3 51,4 16,3 5,1 

 

 

6 CONCLUSIONS 
 

Simulation results show good concordance with exact theoretical results. Simulation 

errors decrease with increase of the number of independent replications of simulation 

experiment. Proposed functional relation among relevant measures for error control of 

simulation results works satisfactorily. Agreement is evident for both traffic intensities: 

saturation and overloading. This contributes to the robustness of simulation approach.  

Results for cases of saturation and overloading are particularly interesting for queuing 

systems which operate for some finite portion of time. Such systems simply do not have time 

enough to reach steady-state because their mission ends before their steady-state happens. 

Results obtained from simulation can and should be used in or for the real system or process 

which from we actually started simulation endeavour. It is a kind of a circle, as it is presented 

by Malindzak [13]. According to that, simulation results in this example support one relaxing 

conclusion, in the sense that queues and waiting times will not explode if queuing system is 

exposed to the “critical traffic conditions”. However, this conclusion stands only for some 

limited time period.     

Field maintenance was, and still is important logistics process in military units in 

various armies and it seems to be the same in the future. First-hand experience in the field 

maintenance and military logistics as a whole, presented by Tilzey, Kasavicha, and Rote [14], 

confirms this conclusion. Besides other logistics aspect, they emphasized importance of 

maintenance and particularly capabilities on the field for recovery and evacuation of heavy 

military equipment (heavy, armoured vehicles).        

Future research could be oriented toward investigation of other measures of 

performances. Also, it is worth to check practical capacity of theoretical approach to be 

applied for larger set of possible states of queuing system and longer duration of operational 

time. In regard to a kind of a real system, future research will be directed to the simulation of 

more complex models.  
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